

Khatra Adibasi Mahavidyalaya

Khatra, Bankura, West Bengal

Department of Mathematics

Syllabus Module (2020-2021)

Syllabus Module Dept. Of Mathematics Session: 2020-2021

Khatra Adibasi Mahavidyalaya

	,	Semester -1			
Course Code	Course Title	Course Topics	Teacher s	No. of lecture s per topic	Total no. of lecture s
SH/MTH/ 101/C-1	Calculus, Geometry & Differential Equation	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	CDG	15	
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of	CDG	15	

models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and			
Unit 4 Differential equations and mathematical	CDG	15	60
Generating lines, classification of quadrics, Illustrations of graphing standard quadric surfaces like cone, ellipsoid.			
discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids,			
Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the	RB		
the type $\int sin^n x dx$, $\int cos^n x dx$, $\int tan^n x dx$, $\int sec^n x dx \int (logx)^n dx$ $, \int sin^m x cos^n x dx$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.Unit 3			

		integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.			
SH/MTH/ 102/ C-2	Algebra	Unit 1Polar representationof complex numbers,nth roots of unity, DeMoivre's theorem forrational indices andits applications.Theory of equations:Relation betweenroots andcoefficients,Transformation ofequation, Descartesrule of signs, Cubicand biquadraticequation.Inequality: Theinequality involving $AM \ge GM \ge HM$,Cauchy-Schwartzinequality.	AI	15	
		Unit 2 Equivalence relations. Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set. Well-ordering property of positive	AI	15	

SH/MTH/	Calculus,	Unit 1	CDG	15	
		of a matrix			
		in finding the inverse			
		theorem and its use			
		Cayley-Hamilton			
		Equation of a matrix.			
		and Characteristic			
		values, Eigen Vectors			
		of a matrix, Eigen			
		subspaces of R ⁿ , rank			
		dimension of			
		Subspaces of R ⁿ ,			
		invertible matrices.			
		inverse of a matrix, characterizations of			
		transformation,			
		matrix of a linear			
		transformations,			
		Introduction to linear			
		Unit 4	MN	15	60
		linear independence.			
		of linear systems,			
		systems, applications			
		solution sets of linear			
		equation Ax=b,			
		equations, the matrix			
		echelon forms, vector			
		reduction and			
		equations, row			
		Systems of linear		13	
		Unit 3	MN	15	
		Arithmetic.			
		Theorem of			
		Induction, statement of Fundamental			
		Mathematical			
		Principles of			
		between integers.			
		Congruence relation			
		algorithm.			
		and Euclidean			
		algorithm, Divisibility			
		integers, Division			

103/ GE-1	Geometry & Differential Equation (GE T1)	Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.			
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sin^n x dx$, $\int cos^n x dx$, $\int tan^n x dx$, $\int sec^n x dx \int (log x)^n dx$, $\int sin^m x cos^n x dx$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of	CDG	15	
		sketching conics. Unit 3 Reflection properties of conics, rotation of axes and second	CDG	15	

		degree equations,			
		classification of conics using the			
		discriminant, polar			
		equations of conics.			
		Spheres. Cylindrical			
		surfaces. Central			
		conicoids,			
		paraboloids, plane			
		sections of conicoids,			
		Generating lines,			
		classification of			
		quadrics, Illustrations			
		of graphing standard			
		quadric surfaces like			
		cone, ellipsoid.			
		Unit 4	CDG	15	60
		Differential equations			
		and mathematical			
		models. General,			
		particular, explicit,			
		implicit and singular			
		solutions of a			
		differential equation.			
		Exact differential			
		equations and			
		integrating factors,			
		separable equations			
		and equations			
		reducible to this			
		form, linear equation and Bernoulli			
		equations, special			
		integrating factors			
		and transformations.			
 The Tenteti	, datas of lat	ernal Assessments	uill ha i		
2021.				ii Janu	ary
		SEMESTER – II			
Course Code	Course Title	Course Topics	Teacher	No. of	Total
Jourse Code	oodise fille		reaction	140. 01	TULAI

			S	lecture s per topic	no. of lecture s
SH/MTH/	Real Anlysis	Unit 1	AI	15	
201/ C-3		Review of Algebraic			
		and Order Properties			
		of R, ε-			
		neighbourhood of a			
		point in R. Idea of			
		countable sets,			
		uncountable sets and			
		uncountability of R.			
		Bounded above sets,			
		Bounded below sets,			
		Bounded Sets,			
		Unbounded sets.			
		Suprema and Infima.			
		Completeness			
		Property of R and its			
		equivalent properties.			
		The Archimedean			
		Property, Density of			
		Rational (and			
		Irrational) numbers in			
		R, Intervals. Limit			
		points of a set,			
		Isolated points, Open set, closed set,			
		derived set,			
		Illustrations of			
		Bolzano-Weierstrass			
		theorem for sets,			
		compact sets in R,			
		Heine-Borel			
		Theorem.			
		Unit 2	RB	15	
		Sequences, Bounded			
		sequence,			
		Convergent			
		sequence, Limit of a			
		sequence, lim inf, lim			
		sup. Limit Theorems.			
		Monotone			
		Sequences,			

		Monotone Convergence Theorem. Subsequences, Divergence Criteria. Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy sequence, Cauchy sequence, Cauchy's Convergence Criterion. Unit 3 Infinite series, convergence and	RB	20	50
		divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional			
SH/MTH/ 202/C-4	Differential Equations and Vector Calculus	convergence. Unit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and	CDG	15	

	Т		I
applications, Linear			
homogeneous and			
non-homogeneous			
equations of higher			
order with constant			
coefficients, Euler's			
equation, method of			
undetermined			
coefficients, method			
of variation of			
parameters.			
Unit 2	CDG	15	
Systems of linear			
differential			
equations, types of			
linear systems,			
differential operators,			
an operator method			
for linear systems			
with constant			
coefficients,			
Basic Theory of			
linear systems in			
normal form,			
homogeneous linear			
systems with			
constant coefficients:			
Two Equations in two			
unknown functions.			
Unit 3	CDG	15	
Equilibrium points,	CDU	13	
Interpretation of the			
phase plane			
Power series solution			
of a differential			
equation about an			
ordinary point,			
solution about a			
regular singular			
point.			
Unit 4	Λ1	15	60
Triple product,	AI	15	60
		1	
introduction to vector functions, operations			

		with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions.			
SH/ MTH/	Real	Unit 1 Review of Algebraic	CDG	15	
203/ GE-2	Analysis (GE	and Order Properties			
	T3)	of R, ε-			
		neighbourhood of a			
		point in R. Idea of			
		countable sets,			
		uncountable sets and			
		uncountability of R.			
		Bounded above sets, Bounded below sets,			
		Bounded Sets,			
		Unbounded sets.			
		Suprema and Infima.			
		Completeness			
		Property of R and its			
		equivalent properties.			
		The Archimedean			
		Property, Density of			
		Rational (and Irrational) numbers in			
		R, Intervals. Limit			
		points of a set,			
		Isolated points, Open			
		set, closed set,			
		derived set,			
		Illustrations of			
		Bolzano-Weierstrass			
		theorem for sets,			
		compact sets in R, Heine-Borel			
		Theorem.			
		Unit 2	CDG	15	
		Sequences, Bounded	CDG	13	
		sequence,			
		Convergent			
		sequence, Limit of a			

[I			
		sequence, lim inf, lim			
		sup. Limit Theorems.			
		Monotone			
		Sequences,			
		Monotone			
		Convergence			
		Theorem.			
		Subsequences,			
		Divergence Criteria.			
		Monotone			
		Subsequence			
		Theorem (statement			
		only), Bolzano			
		Weierstrass Theorem			
		for Sequences.			
		Cauchy sequence,			
		Cauchy's			
		Convergence			
		Criterion.			
		Unit 3	CDG	20	50
		Infinite series,			
		convergence and			
		divergence of infinite			
		series, Cauchy			
		Criterion, Tests for			
		convergence:			
		Comparison test,			
		Limit Comparison			
		test, Ratio Test,			
		Cauchy's nth root			
		test, Integral test.			
		Alternating series,			
		Leibniz test. Absolute			
		and Conditional			
		convergence.			
The tentative d	ates for the I	nternal Assessme	nt will b	he hv th	e end
				s sy th	
of June 2021.					
	SE	MESTER - III			
Course Code	Course Title	Course Topics	Teacher	No. of	Total
			s	lecture	no. of
				s per	lecture
				topic	S
SH/MTH/	Theory of	Unit 1	CDG	15	

301/C-5	Real	Limits of functions			
	Functions &	(ε - δ approach),			
		sequential criterion			
	Introduction	for limits, divergence			
	to Metric	criteria. Limit			
	Space	theorems, one sided			
		limits. Infinite limits			
		and limits at infinity.			
		Continuous			
		functions, sequential			
		criterion for			
		continuity and			
		discontinuity. Algebra			
		of continuous			
		functions.			
		Continuous functions			
		on an interval,			
		intermediate value			
		theorem, location of			
		roots theorem,			
		preservation of intervals theorem.			
		Uniform continuity,			
		non-uniform			
		continuity criteria,			
		uniform continuity			
		theorem.			
		Unit 2	CDG	15	
		Differentiability of a	CDU	13	
		function at a point			
		and in an interval,			
		Caratheodory's			
		theorem, algebra of			
		differentiable			
		functions. Relative			
		extrema, interior			
		extremum theorem.			
		Rolle's theorem.			
		Mean value theorem,			
		intermediate value			
		property of			
		derivatives,			
		Darboux's theorem.			
		Applications of mean			

1		value theorem to			
		inequalities and			
		approximation of polynomials.			
		Unit 3	RB	15	
		Cauchy's mean value			
		theorem. Taylor's			
		theorem with			
		Lagrange's form of			
		remainder, Taylor's			
		theorem with			
		Cauchy's form of			
		remainder,			
		application of			
		Taylor's theorem to			
		convex functions,			
		relative extrema.			
		Taylor's series and			
		Maclaurin's series			
		expansions of			
		exponential and			
		trigonometric			
		functions, ln(1 +			
		<i>x</i>), $1/ax + b$ and $(1 + b)$			
		<i>x</i>) <i>n</i> . Application of			
		Taylor's theorem to			
		inequalities.			
		Unit 4	RB	15	60
		Unit 4	RB	15	60
		Metric spaces:	RB	15	60
		Metric spaces: Definition and	RB	15	60
		Metric spaces: Definition and examples. Open and	RB	15	60
		Metric spaces: Definition and examples. Open and closed balls,	RB	15	60
		Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open	RB	15	60
		Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set.	RB	15	60
		Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set,	RB	15	60
		Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter	RB	15	60
		Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces,	RB	15	60
		Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets,	RB	15	60
		Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces.			60
SH/MTH/	Group	Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces. Unit 1	RB	15	60
SH/MTH/ 302/ C-6	Group Theory-I	Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces. Unit 1 Symmetries of a			60
	_	Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces. Unit 1			60

homomorphisms,			
Group	_		
Unit 5	MN	15	75
finite abelian groups.			
Cauchy's theorem for			
factor groups,			
normal subgroups,			
number of groups,			
product of a finite			
External direct		15	
Unit 4	MN	15	
including Fermat's Little theorem.			
and consequences			
Lagrange's theorem			
properties of cosets,			
alternating group,			
permutations,			
and odd			
permutations, even			
properties of			
permutations,			
notation for			
cyclic groups. Cycle			
of subgroups of			
groups, classification			
Properties of cyclic		13	
Unit 3	MN	15	
two subgroups.			
a group, product of			
centralizer, normalizer, centre of			
subgroups,			
examples of			
Subgroups and			
Unit 2	MN	15	
properties of groups.			
elementary			
matrices),			
groups (through			
and quaternion			
permutation groups			
including			

SH/MTH /303 /C-7	Numerical Methods Numerical Methods Lab	properties of homomorphisms, Cayley's theorem, properties of isomorphisms. First, Second and Third isomorphism theorems. Unit 1 Algorithms. Convergence. Errors: Relative, Absolute. Round off. Truncation.	AI	15
		Unit 2 Transcendental and Polynomial equations: Bisection method, Newton's method, Secant method, Regula-falsi method, fixed point iteration, Newton- Raphson method. Rate of convergence of these methods.	AI	15
		Unit 3 System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis. LU Decomposition	AI	15
		Unit 4 Interpolation: Lagrange and Newton's methods. Error bounds. Finite difference operators.	AI	15

SH/MTH /	Algebra	differentiation: Methods based on interpolations, methods based on finite differences. Unit 5 Numerical Integration: Newton Cotes formula, Trapezoidal rule, Simpson's 1/3rd rule, Simpson's 1/3rd rule, Simpson's 3/8th rule, Weddle's rule, Boole's Rule. Midpoint rule, Composite Trapezoidal rule, Composite Simpson's 1/3rd rule, Gauss quadrature formula. The algebraic eigenvalue problem: Power method. Approximation: Least square polynomial approximation.	AI	15	75
304/GE-3	(GET2)	Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Descartes rule of signs, Cubic			

	and biquadratic			
	equation.			
	Inequality: The			
	inequality involving			
	AM≥GM≥HM,			
	Cauchy-Schwartz			
	inequality.			ļ
	Unit 2	CDG	15	
	Equivalence			
	relations. Functions,			
	Composition of			
	functions, Invertible			
	functions, One to one			
	correspondence and			
	cardinality of a set.			
	Well-ordering			
	property of positive			
	integers, Division			
	algorithm, Divisibility			
	and Euclidean			
	algorithm.			
	Congruence relation			
	between integers.			
	Principles of			
	Mathematical			
	Induction, statement			
	of Fundamental			
	Theorem of			
	Arithmetic.			
	Unit 3	RB	15	
	Systems of linear			
	equations, row			
	reduction and			
	echelon forms, vector			
	equations, the matrix			
	equation Ax=b,			
	solution sets of linear			
	systems, applications			
	of linear systems,			
	linear independence.			
	Unit 4	RB	15	60
	Introduction to linear			
	transformations,			
	matrix of a linear			
I I				

		transformation, inverse of a matrix,			
		characterizations of			
		invertible matrices.			
		Subspaces of Rn,			
		dimension of			
		subspaces of Rn,			
		rank of a matrix,			
		Eigen values, Eigen			
		Vectors and			
		Characteristic			
		Equation of a matrix.			
		Cayley-Hamilton			
		theorem and its use			
		in finding the inverse of a matrix			
SH/MTH /	Pogramming		AI	50	50
			AI	50	50
305/SEC-1	using C				
	(New)				
The tentative	e dates for the I	nternal Assessme	ent will l	be in	
The tentative November 20		nternal Assessme	ent will	be in	
)20.	nternal Assessme MESTER – IV	ent will	be in	
)20.		ent will	be in	Total
November 20)20. SE	MESTER – IV		No. of lecture	no. of
November 20)20. SE	MESTER – IV	Teacher	No. of lecture s per	no. of lecture
November 20 Course Code	020. SE Course Title	MESTER - IV Course Topics	Teacher s	No. of lecture s per topic	no. of
November 20 Course Code SH/MTH	020. SE Course Title Riemann	MESTER – IV Course Topics Unit 1	Teacher	No. of lecture s per	no. of lecture
November 20 Course Code	020. SE Course Title Riemann Integration	MESTER – IV Course Topics Unit 1 Riemann integration:	Teacher s	No. of lecture s per topic	no. of lecture
November 20 Course Code SH/MTH	020. SE Course Title Riemann Integration and Series of	MESTER – IV Course Topics Unit 1 Riemann integration: inequalities of upper	Teacher s	No. of lecture s per topic	no. of lecture
November 20 Course Code SH/MTH	020. SE Course Title Riemann Integration	MESTER – IV Course Topics Unit 1 Riemann integration: inequalities of upper and lower sums,	Teacher s	No. of lecture s per topic	no. of lecture
November 20 Course Code SH/MTH	020. SE Course Title Riemann Integration and Series of	MESTER – IV Course Topics Unit 1 Riemann integration: inequalities of upper	Teacher s	No. of lecture s per topic	no. of lecture
November 20 Course Code SH/MTH	020. SE Course Title Riemann Integration and Series of	MESTER – IV Course Topics Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration,	Teacher s	No. of lecture s per topic	no. of lecture
November 20 Course Code SH/MTH	020. SE Course Title Riemann Integration and Series of	MESTER – IV Course Topics Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem,	Teacher s	No. of lecture s per topic	no. of lecture
November 20 Course Code SH/MTH	020. SE Course Title Riemann Integration and Series of	MESTER – IV Course Topics Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions	Teacher s	No. of lecture s per topic	no. of lecture
November 20 Course Code SH/MTH	020. SE Course Title Riemann Integration and Series of	MESTER – IV Course Topics Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability,	Teacher s	No. of lecture s per topic	no. of lecture
November 20 Course Code SH/MTH	020. SE Course Title Riemann Integration and Series of	MESTER – IV Course Topics Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and	Teacher s	No. of lecture s per topic	no. of lecture
November 20 Course Code SH/MTH	020. SE Course Title Riemann Integration and Series of	MESTER – IV Course Topics Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann	Teacher s	No. of lecture s per topic	no. of lecture
November 20 Course Code SH/MTH	020. SE Course Title Riemann Integration and Series of	MESTER – IV Course Topics Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through	Teacher s	No. of lecture s per topic	no. of lecture

	Unit 4	MN	15	
	Test.			
	and Weierstrass M-			
	uniform convergence			
	Cauchy criterion for			
	series of functions;			
	sum function of a			
	derivability of the			
	continuity and			
	Theorems on the			
	functions;			
	functions. Series of			
	sequence of			
	limit function of a			
	derivability and integrability of the			
	on continuity,			
	functions. Theorems			
	of sequence of			
	uniform convergence			
	Pointwise and			
	Unit 3	MN	15	
	functions.			
	and Gamma			
	Convergence of Beta			
	Improper integrals.			
	Unit 2	MN	15	
	Calculus.			
	theorem of Integral			
	Fundamental			
	theorem for Integrals.			
	Intermediate Value			
	functions.			
	and monotone			
	piecewise continuous			
	integrability of			
	definition and			
	Riemann integral;			
	Properties of the			
	continuous functions,			
	of monotone and			

		Fourier series: Definition of Fourier coefficients and series, Reimann Lebesgue lemma, Bessel's inequality, Parseval's identity, Dirichlet's condition. Examples of Fourier expansions and summation results for series.			
		Unit 5 Power series, radius of convergence, Cauchy Hadamard Theorem. Differentiation and integration of power series; Abel's Theorem; Weierstrass Approximation Theorem.	MN	15	75
SH/MTH/402/C	Multivariate	Unit 1	AI	15	
-9	Calculus	Functions of several variables, limit and continuity of functions of two or more variables Partial differentiation, total differentiability and differentiability, sufficient condition for differentiability. Chain rule for one and two independent parameters, directional derivatives, the gradient, maximal and normal property of the gradient,			

I II I II I II I I I I I I I I I I I I I I I I I I I				
	tangent planes,			
	Extream of functions			
	of two variables,			
	method of Lagrange			
	multipliers,			
	constrained			
	optimization			
	problems			
	Unit 2	AI	15	
[Double integration			
	over rectangular			
r	region, double			
i	integration over non-			
r i i i i i i i i i i i i i i i i i i i	rectangular region,			
]	Double integrals in			
1	polar co-ordinates,			
	Triple integrals,			
	Triple integral over a			
r i i i i i i i i i i i i i i i i i i i	parallelepiped and			
5	solid regions. Volume			
ł	by triple integrals,			
	cylindrical and			
S	spherical co-			
	ordinates. Change of			
, v	variables in double			
i	integrals and triple			
i	integrals			
	Unit 3	AI	15	
	Definition of vector			
f	field, divergence and			
	curl.			
	Line integrals,			
	Applications of line			
	integrals: Mass and			
	Work. Fundamental			
	theorem for line			
	integrals,			
	conservative vector			
	fields, independence			
	of path.			
	Unit 4	A 1	16	60
		AI	15	60
	Croop's these rest			
	Green's theorem,			
S	Green's theorem, surface integrals, integrals over			

		parametrically defined surfaces. Stoke's theorem, The Divergence theorem.			
SH/MTH /403/C-10	0 Ring Theory and Linear Algebra-I	Unit 1 Definition and examples of rings, properties of rings, subrings, integral domains and fields, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals, prime and maximal ideals.	RB	15	
		Unit 2 Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III, field of quotients.	RB	15	
		Unit 3 Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces.	RB	15	
		Unit 4 Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation	RB	15	60

		of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, 25nvertibility and isomorphisms, change of coordinate matrix.		
SH/MTH /404/ GE-4	Differential Equations and Vector Calculus (GET4)	Unit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation of parameters.	CDG	15
		Unit 2 Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant	CDG	15

	coefficients, Basic Theory of linear systems in normal form, homogeneous linear systems with constant coefficients: Two Equations in two unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a	CDG	15	
	regular singular			
	point.			
	Unit 4 Triple product, introduction to vector functions, operations with vector-valued	CDG	15	60
	functions, limits and continuity of vector functions, differentiation and integration of vector functions.			

	Unit 2	RB	15	
	Eulerian circuits,			
	Eulerian graph, semi-			
	Eulerian graph,			
	theorems,			
	Hamiltonian cycles,			
	theorems			
	Representation of a			
	graph by matrix, the			
	adjacency matrix,			
	incidence matrix,			
	weighted graph,			
	Unit 3	RB	15	
	Travelling salesman's			
	problem, shortest			
	path, Tree and their			
	properties, spanning			
	tree, Dijkstra's			
	algorithm, Warshall's			
	algorithm.			
The tentative dates of the In	τ ο			

The tentative dates of the Internal Assessment will be in June 2021.

SEMESTER – V						
Course Code	Course Title	Course Topics	Teacher s	No. of lecture s per topic	Total no. of lecture s	
SH/MTH /	Partial	Unit 1	RB	15		
501/C-11	Differential	Partial Differential				
	Equations and Applications	Equations – Basic concepts and Definitions. Mathematical Problems. First- Order Equations: Classification, Construction and Geometrical Interpretation. Method of Characteristics for obtaining General				

	[1 1	
Solution of Quasi			
Linear Equations.			
Canonical Forms of			
First-order Linear			
Equations. Method of			
Separation of			
Variables for solving			
first order partial			
differential			
equations.			
Unit 2	RB	15	
Derivation of Heat		13	
equation, Wave			
equation, wave			
equation.			
Classification of			
second order linear			
equations as			
hyperbolic, parabolic			
or elliptic. Reduction			
of second order			
Linear Equations to			
canonical forms.			
	RB	15	
canonical forms.	RB	15	
canonical forms. Unit 3	RB	15	
canonical forms. Unit 3 The Cauchy problem,	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy-	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi-	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi- Infinite String with a	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi- Infinite String with a fixed end, Semi-	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi- Infinite String with a fixed end, Semi- Infinite String with a	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi- Infinite String with a fixed end, Semi- Infinite String with a Free end. Equations	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi- Infinite String with a fixed end, Semi- Infinite String with a Free end. Equations with non-	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi- Infinite String with a fixed end, Semi- Infinite String with a Free end. Equations with non- homogeneous	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi- Infinite String with a fixed end, Semi- Infinite String with a Free end. Equations with non- homogeneous boundary conditions.	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi- Infinite String with a fixed end, Semi- Infinite String with a Free end. Equations with non- homogeneous boundary conditions. Non- Homogeneous	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi- Infinite String with a fixed end, Semi- Infinite String with a Free end. Equations with non- homogeneous boundary conditions. Non- Homogeneous Wave Equation.	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi- Infinite String with a fixed end, Semi- Infinite String with a Free end. Equations with non- homogeneous boundary conditions. Non- Homogeneous Wave Equation. Method of separation	RB	15	
canonical forms. Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi- Infinite String with a fixed end, Semi- Infinite String with a Free end. Equations with non- homogeneous boundary conditions. Non- Homogeneous Wave Equation.	RB	15	

		Problem. Solving the Heat Conduction problem Unit 4 Central force. Constrained motion, varying mass, tangent and normal components of acceleration, modelling ballistics and planetary motion, Kepler's second law.	RB	15	60
SH/MTH /	Group	Unit 1	MN	15	
502/C-12	Theory - II	Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic subgroups, Commutator subgroup and its properties.			
		Unit 2 Properties of external direct products, the group of units modulo n as an external direct product, internal direct products, Fundamental Theorem of finite abelian groups.	MN	15	
		Unit 3 Group actions, stabilizers and	MN	15	

		kernels, permutation representation associated with a given group action. Applications of group actions. Generalized Cayley's theorem. Index theorem. Unit 4	MN	15	60
		Groups acting on themselves by conjugation, class equation and consequences, conjugacy in Sn, p- groups, Sylow's theorems and consequences, Cauchy's theorem, Simplicity of An for n ≥ 5, non-simplicity tests.			
SH/MTH /	Linear	Unit 1	CD	15	
503/DSE-1	Programmin	Introduction to linear			
	g (DSE T1)	programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison.			

		oconomia			
		economic			
		interpretation of the dual.			
		Transportation			
		problem and its			
		mathematical			
		formulation,			
		northwest - corner			
		method, least cost			
		method and Vogel			
		approximation			
		method for			
		determination of			
		starting basic			
		solution, algorithm			
		for solving			
		transportation			
		problem, assignment			
		problem and its			
		mathematical			
		formulation,			
		Hungarian method			
		for solving			
		assignment problem.			
		Unit 3	CD	20	50
		Game theory:			
		formulation of two			
		person zero sum			
		games, solving two			
		games, solving two person zero sum			
		games, solving two person zero sum games, games with			
		games, solving two person zero sum games, games with mixed strategies,			
		games, solving two person zero sum games, games with mixed strategies, graphical solution			
		games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear			
		games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution			
		games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.			
SH/MTH /	Probability	games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games. Unit 1	AI	15	
SH/MTH / 504 /DSE-2	Probability and	games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games. Unit 1 Sample space,	AI	15	
	and	games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games. Unit 1	AI	15	
	and Statistics	games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games. Unit 1 Sample space, probability axioms, real random variables	AI	15	
	and	games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games. Unit 1 Sample space, probability axioms,	AI	15	
	and Statistics	games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games. Unit 1 Sample space, probability axioms, real random variables	AI	15	
	and Statistics	games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games. Unit 1 Sample space, probability axioms, real random variables (discrete and	AI	15	

]
	probability			
	mass/density			
	functions,			
	mathematical			
	expectation,			
	moments, moment			
	generating function,			
	characteristic			
	function, discrete			
	distributions:			
	uniform, binomial,			
	Poisson, geometric,			
	negative binomial,			
	continuous			
	distributions:			
	uniform, normal,			
	exponential.			
	Unit 2	AI	15	
	Joint cumulative			
	distribution function			
	and its properties,			
	joint probability			
	density functions,			
	marginal and			
	conditional			
	distributions,			
	expectation of			
	function of two			
	random variables,			
	conditional			
	expectations,			
	independent random			
	variables, bivariate			
	normal distribution,			
	correlation			
	coefficient, joint			
	_ control of the joint			
1	moment generating			
	moment generating function and			
	function and			
	function and calculation of			
	function and calculation of covariance , linear			
	function and calculation of covariance , linear regression for two			
	function and calculation of covariance , linear	AI	15	

		Chebyshev's			
		inequality, statement			
		and interpretation of (weak) law of large			
		numbers and strong			
		law of large numbers. Central Limit			
		theorem for			
		independent and			
		identically distributed			
		random variables			
		with finite variance,			
		Markov Chains,			
		Chapman-			
		Kolmogorov			
		equations,			
		classification of			
		states.			
		Unit 4	AI	15	60
		Random Samples,			
		Sampling			
		Distributions,			
		Estimation of			
		parameters, Testing			
The tentative d	lates of the Ir	parameters, Testing	on will b	e in	
The tentative d November 2020		parameters, Testing of hypothesis.	on will b	e in	
		parameters, Testing of hypothesis.	on will b	e in	
	0.	parameters, Testing of hypothesis.	on will b	e in	
November 2020	0. SE	parameters, Testing of hypothesis. nternal Examinatio			
	0.	parameters, Testing of hypothesis. nternal Examinatio	Teacher	No. of	Total
November 2020	0. SE	parameters, Testing of hypothesis. nternal Examinatio		No. of lecture	no. of
November 2020	0. SE	parameters, Testing of hypothesis. nternal Examinatio	Teacher	No. of lecture s per	
November 2020 Course Code	0. SE	parameters, Testing of hypothesis. nternal Examinatio	Teacher s	No. of lecture s per topic	no. of lecture
November 2020 Course Code	0. SE Course Title Metric	parameters, Testing of hypothesis. Internal Examination IMESTER – VI	Teacher	No. of lecture s per	no. of lecture
November 2020	0. SE Course Title Metric Spaces and	parameters, Testing of hypothesis. Ternal Examination MESTER – VI Course Topics Unit 1	Teacher s	No. of lecture s per topic	no. of lecture
November 2020 Course Code	0. SE Course Title Metric Spaces and Complex	parameters, Testing of hypothesis. Ternal Examination EMESTER – VI Course Topics Unit 1 Metric spaces:	Teacher s	No. of lecture s per topic	no. of lecture
November 2020 Course Code	0. SE Course Title Metric Spaces and	parameters, Testing of hypothesis. Ternal Examination EMESTER – VI Course Topics Unit 1 Metric spaces: Sequences in metric	Teacher s	No. of lecture s per topic	no. of lecture
November 2020 Course Code SH/MTH /	0. SE Course Title Metric Spaces and Complex	parameters, Testing of hypothesis. Ternal Examination EMESTER – VI Course Topics Unit 1 Metric spaces: Sequences in metric spaces, Cauchy	Teacher s	No. of lecture s per topic	no. of lecture
November 2020 Course Code SH/MTH /	0. SE Course Title Metric Spaces and Complex	parameters, Testing of hypothesis. Ternal Examination MESTER – VI Course Topics Unit 1 Metric spaces: Sequences in metric spaces, Cauchy sequences. Complete	Teacher s	No. of lecture s per topic	no. of lecture

Continuous			
mappings, sequential			
criterion and other			
characterizations of			
continuity. Uniform			
continuity.			
Connectedness,			
connected subsets of			
R.			
Compactness:			
Sequential			
compactness, Heine-			
Borel property,			
Totally bounded			
spaces, finite			
intersection property,			
and continuous			
functions on compact			
sets.			
Homeomorphism.			
Contraction			
mappings. Banach			
Fixed point Theorem			
and its application to			
ordinary differential			
equation.			
Unit 3	RB	15	
Limits, Limits			
involving the point at			
infinity, continuity.			
Properties of			
complex numbers,			
regions in the			
complex plane,			
functions of complex			
variable, mappings.			
		1	
Derivatives,			
differentiation			
differentiation formulas, Cauchy-			
differentiation formulas, Cauchy- Riemann equations,			
differentiation formulas, Cauchy- Riemann equations, sufficient conditions			
differentiation formulas, Cauchy- Riemann equations,			

		Analytic functions,			
		examples of analytic			
		functions,			
		exponential function,			
		Logarithmic function,			
		trigonometric			
		function, derivatives			
		of functions, and			
		definite integrals of			
		functions. Contours,			
		Contour integrals and			
		its examples, upper			
		bounds for moduli of			
		contour integrals.			
		Cauchy- Goursat			
		theorem, Cauchy			
		integral formula.			
		Unit 5	RB	15	
		Liouville's theorem			
		and the fundamental			
		theorem of algebra.			
		Convergence of			
		sequences and			
		series, Taylor series			
		and its examples.			
		Unit 6	RB	15	90
		Laurent series and its			
		examples, absolute			
		and uniform			
		convergence of			
		power series.			
SH/MTH /	Ring Theory	Unit 1	CDG	15	
602/C-14	and Linear	Polynomial rings over			
	Algebra II	commutative rings,			
		division algorithm			
		and consequences,			
		principal ideal			
		domains, factorization of			
		polynomials, reducibility tests,			
		irreducibility tests,			
		Eisenstein criterion,			
		and unique			

SH/MTH /	Number	Unit 1	MN	15	
		Spectral theorem.			
		projections and			
		Orthogonal			
		operators.			
		and self-adjoint			
		equations. Normal			
		systems of linear			
		minimal solutions to			
		Approximation,			
		Squares			
		operator. Least			
		the adjoint of a linear			
		complements, Bessel's inequality,			
		process, orthogonal			
		orthogonalisation			
		Schmidt			
		and norms, Gram-			
		Inner product spaces			
		Unit 3	CDG	20	50
		canonical forms.	<u> </u>		
		linear operator,			
		polynomial for a			
		theorem, the minimal			
		and Cayley-Hamilton			
		invariant subspaces			
		diagonalizability,			
		linear operator,			
		Eigen spaces of a			
		basis, annihilators.			
		its matrix in the dual			
		transformation and			
		transpose of a linear			
		basis, double dual,			
		Dual spaces, dual	CDG	15	
		Unit 2		15	
		domains, Euclidean			
		domains, Euclidean			
		primes, unique factorization			
		domains, irreducible,			
		Divisibility in integral			
		factorization in Z [x].			

603/DSE-	Theory (DSE	Linear Diophantine equation, prime			
3	T7)	counting function,			
		statement of prime			
		number theorem,			
		Goldbach conjecture,			
		linear congruences,			
		complete set of			
		residues, Chinese			
		Remainder theorem,			
		Fermat's Little			
		theorem, Wilson's			
		theorem.			
		Unit 2	MN	15	
		Number theoretic			
		functions, sum and			
		number of divisors,			
		totally multiplicative			
		functions, definition			
		and properties of the			
		Dirichlet product, the			
		Mobius Inversion			
		formula, the greatest			
		integer function,			
		Euler's phi - function,			
		Euler's theorem,			
		reduced set of residues. some			
		properties of Euler's			
		phi-function.			
		Unit 3	MN	20	E0
		Order of an integer	IVIIN	20	50
		modulo n, primitive			
		roots for primes,			
		composite numbers			
		having primitive			
		roots, Euler's			
		criterion, the			
		Legendre symbol and			
		its properties,			
		quadratic reciprocity,			
		quadratic			
		congruences with			
		composite moduli.			

		Public key encryption, RSA encryption and decryption, the equation $x^2 + y^2 = z^2$, Fermat's Last theorem.		
SH/MTH/ 604/DSE-4	Project Work		AI	

The Tentative dates for the Internal Assessment will be in June 2021.