Khatra Adibasi Mahavidyalaya

 Khatra, Bankura, West BengalDepartment of Mathematics

Syllabus Module (2020-2021)
\square

Syllabus Module

Dept. Of Mathematics

Session: 2020-2021

Khatra Adibasi Mahavidyalaya

Semester -1					
Course Code	Course Title	Course Topics	Teacher s	No. of lecture s per topic	Total no. of lecture s
$\begin{aligned} & \hline \text { SH/MTH/ } \\ & \text { 101/C-1 } \end{aligned}$	Calculus, Differential Equation	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{a x+b \sin x}$, $e^{a x+b \cos x},(a x+$ b) ${ }^{n} \sin x,(a x+$ b) ${ }^{n} \cos x$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	CDG	15	
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of	CDG	15	

		the type $\int \sin ^{n} x d x$, $\int \cos ^{n} x d x$, $\int \tan ^{n} x d x$, $\int \sec ^{n} x d x \int(\log x)^{n} d x$, $\int \sin ^{m} x \cos ^{n} x d x$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.			
		Unit 3 Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, Generating lines, classification of quadrics, Illustrations of graphing standard quadric surfaces like cone, ellipsoid.	RB		
		Unit 4 Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and	CDG	15	60

		integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.		
SH/MTH/		Algebra 102/ C-2 Unit 1 Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving AM \geq GM \geq HM, Cauchy-Schwartz inequality. Unit 2 Equivalence relations. Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set. Well-ordering property of positive $\mathbf{1 5}$		

		integers, Division algorithm, Divisibility and Euclidean algorithm. Congruence relation between integers. Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic.			
	Unit 3 Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear independence.	$\mathbf{M N}$	$\mathbf{1 5}$		
Calculus,	Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix	$\mathbf{M N}$	$\mathbf{1 5}$	$\mathbf{6 0}$	
Unit 1					

103/ GE-1	Geometry \& Differential Equation (GE T1)	Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{a x+b s i n x}$, $e^{a x+b \cos x},(a x+$ b) ${ }^{n} \sin x,(a x+$ b) ${ }^{n} \cos x$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.			
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin ^{n} x d x$, $\int \cos ^{n} x d x$, $\int \tan ^{n} x d x$, $\int \sec ^{n} x d x \int(\log x)^{n} d x$, $\int \sin ^{m} x \cos ^{n} x d x$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.	CDG	15	
		Unit 3 Reflection properties of conics, rotation of axes and second	CDG	15	

		degree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, Generating lines, classification of quadrics, Illustrations of graphing standard quadric surfaces like cone, ellipsoid.			
		Unit 4 Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.	CDG	15	60
The Ten 2021.	tes of I	Assessments	ill be	Ja	
		MESTER - II			
Course Code	Course Title	Course Topics	Teacher	No. of	Total

			s	lecture s per topic	no. of lecture s
$\begin{aligned} & \hline \text { SH/MTH/ } \\ & 201 / \mathrm{C}-3 \end{aligned}$	Real Anlysis	Unit 1 Review of Algebraic and Order Properties of R, ε neighbourhood of a point in R. Idea of countable sets, uncountable sets and uncountability of R. Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets. Suprema and Infima. Completeness Property of R and its equivalent properties. The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. Limit points of a set, Isolated points, Open set, closed set, derived set, Illustrations of Bolzano-Weierstrass theorem for sets, compact sets in R, Heine-Borel Theorem.	AI	15	
		Unit 2 Sequences, Bounded sequence, Convergent sequence, Limit of a sequence, lim inf, lim sup. Limit Theorems. Monotone Sequences,	RB	15	

		Monotone Convergence Theorem. Subsequences, Divergence Criteria. Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy sequence, Cauchy's Convergence Criterion.			
		Unit 3 Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence.	RB	20	50
$\begin{aligned} & \text { SH/MTH/ } \\ & \text { 202/C-4 } \end{aligned}$	Differential Equations and Vector Calculus	Unit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and	CDG	15	

| | applications, Linear
 homogeneous and
 non-homogeneous
 equations of higher
 order with constant
 coefficients, Euler's
 equation, method of
 undetermined
 coefficients, method
 of variation of
 parameters.
 Unit 2
 Systems of linear
 differential
 equations, types of
 linear systems,
 differential operators,
 an operator method
 for linear systems
 with constant
 coefficients,
 Basic Theory of
 linear systems in
 normal form,
 homogeneous linear
 systems with
 constant coefficients:
 Two Equations in two
 unknown functions.
 Unit 3
 Equilibrium points,
 Interpretation of the
 phase plane
 Power series solution
 of a differential
 equation about an
 ordinary point,
 solution about a
 regular singular
 point. CDG | $\mathbf{1 5}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Unit 4
 Triple product,
 introduction to vector
 functions, operations | | | |

		with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions.			
SH/ MTH/ 203/ GE-2	Real Analysis (GE T3)	Unit 1 Review of Algebraic and Order Properties of R, ε neighbourhood of a point in R. Idea of countable sets, uncountable sets and uncountability of R. Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets. Suprema and Infima. Completeness Property of R and its equivalent properties. The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. Limit points of a set, Isolated points, Open set, closed set, derived set, Illustrations of Bolzano-Weierstrass theorem for sets, compact sets in R, Heine-Borel Theorem.	CDG	15	
		Unit 2 Sequences, Bounded sequence, Convergent sequence, Limit of a	CDG	15	

		sequence, lim inf, lim sup. Limit Theorems. Monotone Sequences, Monotone Convergence Theorem. Subsequences, Divergence Criteria. Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy sequence, Cauchy's Convergence Criterion.			
		Unit 3 Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence.	CDG	20	

The tentative dates for the Internal Assessment will be by the end of June 2021.

SEMESTER - III					
Course Code	Course Title	Course Topics	Teacher s	No. of lecture sper topic	Total no. of lecture s
SH/MTH/	Theory of	Unit 1	CDG	15	

301/C-5	Real Functions \& Introduction to Metric Space	Limits of functions ($\varepsilon-\delta$ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform continuity, non-uniform continuity criteria, uniform continuity theorem.			
		Unit 2 Differentiability of a function at a point and in an interval, Caratheodory's theorem, algebra of differentiable functions. Relative extrema, interior extremum theorem. Rolle's theorem. Mean value theorem, intermediate value property of derivatives, Darboux's theorem. Applications of mean	CDG	15	

		value theorem to inequalities and approximation of polynomials.			
		Unit 3 Cauchy's mean value theorem. Taylor's theorem with Lagrange's form of remainder, Taylor's theorem with Cauchy's form of remainder, application of Taylor's theorem to convex functions, relative extrema. Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, $\ln (1+$ $x), 1 / a x+b$ and $(1+$ x)n. Application of Taylor's theorem to inequalities.	RB	15	
		Unit 4 Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces.	RB	15	60
$\begin{aligned} & \mathrm{SH} / \mathrm{MTH} / \\ & 302 / \mathrm{C}-6 \end{aligned}$	Group Theory-I	Unit 1 Symmetries of a square, Dihedral groups, definition and	MN	15	

| | examples of groups
 including
 permutation groups
 and quaternion
 groups (through
 matrices),
 elementary
 properties of groups.
 Unit 2
 Subgroups and
 examples of
 subgroups,
 centralizer,
 normalizer, centre of
 a group, product of
 two subgroups.
 MN | $\mathbf{1 5}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

		properties of homomorphisms, Cayley's theorem, properties of isomorphisms. First, Second and Third isomorphism theorems.			
$\begin{aligned} & \text { SH/MTH } \\ & / 303 / \mathrm{C}-7 \end{aligned}$	Numerical Methods Numerical Methods Lab	Unit 1 Algorithms. Convergence. Errors: Relative, Absolute. Round off. Truncation.	AI	15	
		Unit 2 Transcendental and Polynomial equations: Bisection method, Newton's method, Secant method, Regula-falsi method, fixed point iteration, NewtonRaphson method. Rate of convergence of these methods.	AI	15	
		Unit 3 System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis. LU Decomposition	AI	15	
		Unit 4 Interpolation: Lagrange and Newton's methods. Error bounds. Finite difference operators.	AI	15	

		Gregory forward and backward difference interpolation. Numerical differentiation: Methods based on interpolations, methods based on finite differences.			
		Unit 5 Numerical Integration: Newton Cotes formula, Trapezoidal rule, Simpson's $1 / 3$ rd rule, Simpsons 3/8th rule, Weddle's rule, Boole's Rule. Midpoint rule, Composite Trapezoidal rule, Composite Simpson's 1/3rd rule, Gauss quadrature formula. The algebraic eigenvalue problem: Power method. Approximation: Least square polynomial approximation.	AI	15	75
$\begin{aligned} & \text { SH/MTH / } \\ & 304 / \mathrm{GE}-3 \end{aligned}$	Algebra (GET2)	Unit 1 Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Descartes rule of signs, Cubic	CDG	15	

		and biquadratic equation. Inequality: The inequality involving $A M \geq G M \geq H M$, Cauchy-Schwartz inequality.			
		Unit 2 Equivalence relations. Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set. Well-ordering property of positive integers, Division algorithm, Divisibility and Euclidean algorithm. Congruence relation between integers. Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic.	CDG	15	
		Unit 3 Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation $A x=b$, solution sets of linear systems, applications of linear systems, linear independence.	RB	15	
		Unit 4 Introduction to linear transformations, matrix of a linear	RB	15	60

| | | transformation,
 inverse of a matrix,
 characterizations of
 invertible matrices.
 Subspaces of Rn,
 dimension of
 subspaces of Rn,
 rank of a matrix,
 Eigen values, Eigen
 Vectors and
 Characteristic
 Equation of a matrix.
 Cayley-Hamilton
 theorem and its use
 in finding the inverse
 of a matrix | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SH/MTH / | Pogramming
 using C
 (New) | AI | 50 | 50 |
| 305/SEC-1 | | | | |

The tentative dates for the Internal Assessment will be in
November 2020.

SEMESTER - IV					
Course Code	Course Title	Course Topics	Teacher s	No. of lecture s per topic	Total no. of lecture s
$\begin{aligned} & \text { SH/MTH } \\ & / 401 / \mathrm{C}-8 \end{aligned}$	Riemann Integration and Series of Functions	Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two Definitions.	MN	15	

| | Riemann integrability
 of monotone and
 continuous functions,
 Properties of the
 Riemann integral;
 definition and
 integrability of
 piecewise continuous
 and monotone
 functions.
 Intermediate Value
 theorem for Integrals.
 Fundamental
 theorem of Integral
 Calculus. | | |
| :--- | :--- | :--- | :--- | :--- |

		Fourier series: Definition of Fourier coefficients and series, Reimann Lebesgue lemma, Bessel's inequality, Parseval's identity, Dirichlet's condition. Examples of Fourier expansions and summation results for series.		
	Unit 5 Power series, radius of convergence, Cauchy Hadamard Theorem. Differentiation and integration of power series; Abel's Theorem; Weierstrass Approximation Theorem.	$\mathbf{M N}$	$\mathbf{1 5}$	

		tangent planes, Extream of functions of two variables, method of Lagrange multipliers, constrained optimization problems			
		Unit 2 Double integration over rectangular region, double integration over nonrectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical coordinates. Change of variables in double integrals and triple integrals	AI	15	
		Unit 3 Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence of path.	AI	15	
		Unit 4 Green's theorem, surface integrals, integrals over	AI	15	60

		parametrically defined surfaces. Stoke's theorem, The Divergence theorem.			
$\begin{aligned} & \text { SH/MTH } \\ & / 403 / \mathrm{C}-10 \end{aligned}$	Ring Theory and Linear Algebra-I	Unit 1 Definition and examples of rings, properties of rings, subrings, integral domains and fields, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals, prime and maximal ideals.	RB	15	
		Unit 2 Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III, field of quotients.	RB	15	
		Unit 3 Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces.	RB	15	
		Unit 4 Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation	RB	15	60

		of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, 25nvertibility and isomorphisms, change of coordinate matrix.		
SH/MTH				
	Differential Equations and Vector Calculus (GET4)	Unit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation of parameters.	CDG	$\mathbf{1 5}$
	Unit 2 Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant			

		coefficients, Basic Theory of linear systems in normal form, homogeneous linear systems with constant coefficients: Two Equations in two unknown functions.			
	Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point.	CDG	$\mathbf{1 5}$		
	Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions.	CDG	$\mathbf{1 5}$	$\mathbf{6 0}$	
SH/MTH /	Unit 1 Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bi - partite graphs isomorphism of graphs.	RB	$\mathbf{1 5}$		

		Unit 2 Eulerian circuits, Eulerian graph, semi- Eulerian graph, theorems, Hamiltonian cycles, theorems Representation of a graph by matrix, the adjacency matrix, incidence matrix, weighted graph,	RB	15	
		Unit 3 Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall's algorithm.	RB	15	

The tentative dates of the Internal Assessment will be in June 2021.

SEMESTER - V					
Course Code	Course Title	Course Topics	Teacher s	No. of lecture s per topic	Total no. of lecture s
SH/MTH /	Partial Differential Equations and Applications	Unit 1 Partial Differential	RBuations - Basic concepts and Definitions. Mathematical Problems. First- Order Equations: Classification, Construction and Geometrical Interpretation. Method of Characteristics for obtaining General	15	

		Solution of Quasi Linear Equations. Canonical Forms of First-order Linear Equations. Method of Separation of Variables for solving first order partial differential equations.			
		Unit 2 Derivation of Heat equation, Wave equation and Laplace equation. Classification of second order linear equations as hyperbolic, parabolic or elliptic. Reduction of second order Linear Equations to canonical forms.	RB	15	
		Unit 3 The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi- Infinite String with a fixed end, SemiInfinite String with a Free end. Equations with nonhomogeneous boundary conditions. Non- Homogeneous Wave Equation. Method of separation of variables, Solving the Vibrating String	RB	15	

		Problem. Solving the Heat Conduction problem			
		Unit 4 Central force. Constrained motion, varying mass, tangent and normal components of acceleration, modelling ballistics and planetary motion, Kepler's second law.	RB	15	60
$\begin{aligned} & \hline \text { SH/MTH / } \\ & \text { 502/C-12 } \end{aligned}$	Group Theory - II	Unit 1 Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic subgroups, Commutator subgroup and its properties.	MN	15	
		Unit 2 Properties of external direct products, the group of units modulo n as an external direct product, internal direct products, Fundamental Theorem of finite abelian groups.	MN	15	
		Unit 3 Group actions, stabilizers and	MN	15	

		kernels, permutation representation associated with a given group action. Applications of group actions. Generalized Cayley's theorem. Index theorem.			
		Unit 4 Groups acting on themselves by conjugation, class equation and consequences, conjugacy in Sn , pgroups, Sylow's theorems and consequences, Cauchy's theorem, Simplicity of An for n ≥ 5, non-simplicity tests.	MN	15	60
$\begin{aligned} & \hline \text { SH/MTH / } \\ & 503 / \text { DSE-1 } \end{aligned}$	Linear Programmin g (DSE T1)	Unit 1 Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison.	CD	15	
		Unit 2 Duality, formulation of the dual problem, primal - dual relationships,	CD	15	

		economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving transportation problem, assignment problem and its mathematical formulation, Hungarian method for solving assignment problem.			
		Unit 3 Game theory: formulation of two person zero sum games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.	CD	20	50
SH/MTH / 504 /DSE-2	Probability and Statistics (DSE T4)	Unit 1 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function,	AI	15	

	probability mass/density functions, mathematical expectation, moments, moment generating function, characteristic function, discrete distributions: uniform, binomial, Poisson, geometric, negative binomial, continuous distributions: uniform, normal, exponential.			
	Unit 2 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions, expectation of function of two random variables, conditional expectations, independent random variables, bivariate normal distribution, correlation coefficient, joint moment generating function and calculation of covariance, linear regression for two variables.	AI		
Unit 3				

| | Chebyshev's
 inequality, statement
 and interpretation of
 (weak) law of large
 numbers and strong
 law of large numbers.
 Central Limit
 theorem for
 independent and
 identically distributed
 random variables
 with finite variance,
 Markov Chains,
 Chapman-
 Kolmogorov
 equations,
 classification of
 states. | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Unit 4
 Random Samples,
 Sampling
 Distributions,
 Estimation of
 parameters, Testing
 of hypothesis. | AI | $\mathbf{1 5}$ | $\mathbf{6 0}$ |
| November 2020. | The tentative dates of the Internal Examination will be in | | | |

SEMESTER - VI						
Course Code	Course Title	Course Topics	Teacher s	No. of lecture sper topic	Total no. of lecture s	
SH/MTH / $601 /$ C-13	Metric Spaces and Complex Analysis	Unit 1 Metric spaces: Sequences in metric spaces, Cauchy sequences. Complete Metric Spaces, Cantor's theorem.	RB	15		
	Unit 2	RB	15			

| | Continuous
 mappings, sequential
 criterion and other
 characterizations of
 continuity. Uniform
 continuity.
 Connectedness,
 connected subsets of
 R.
 Compactness:
 Sequential
 compactness, Heine-
 Borel property,
 Totally bounded
 spaces, finite
 intersection property,
 and continuous
 functions on compact
 sets.
 Homeomorphism.
 Contraction
 mappings. Banach
 Fixed point Theorem
 and its application to
 ordinary differential
 equation. | | |
| :--- | :--- | :--- | :--- | :--- |
| Unit 3
 Limits, Limits
 involving the point at
 infinity, continuity.
 Properties of
 complex numbers,
 regions in the
 complex plane,
 functions of complex
 variable, mappings.
 Derivatives,
 differentiation
 formulas, Cauchy-
 Riemann equations,
 sufficient conditions
 for differentiability. | | | |
| Unit 4 | | | |

		Analytic functions, examples of analytic functions, exponential function, Logarithmic function, trigonometric function, derivatives of functions, and definite integrals of functions. Contours, Contour integrals and its examples, upper bounds for moduli of contour integrals. Cauchy- Goursat theorem, Cauchy integral formula.			
	Unit 5 Liouville's theorem and the fundamental theorem of algebra. Convergence of sequences and series, Taylor series and its examples.	RB	$\mathbf{1 5}$		
Anit 6					

		factorization in Z [x]. Divisibility in integral domains, irreducible, primes, unique factorization domains, Euclidean domains.			
	Unit 2 Dual spaces, dual basis, double dual, transpose of a linear transformation and its matrix in the dual basis, annihilators. Eigen spaces of a linear operator, diagonalizability, invariant subspaces and Cayley-Hamilton theorem, the minimal polynomial for a linear operator,	CDG	$\mathbf{1 5}$		
Number					

603/DSE-	Theory (DSE T7)	Linear Diophantine equation, prime counting function, statement of prime number theorem, Goldbach conjecture, linear congruences, complete set of residues, Chinese Remainder theorem, Fermat's Little theorem, Wilson's theorem.			
	Unit 2 Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mobius Inversion formula, the greatest integer function, Euler's phi - function, Euler's theorem, reduced set of residues. some properties of Euler's phi-function.	$\mathbf{M N}$	$\mathbf{1 5}$		
Unit 3 Order of an integer modulo n, primitive roots for primes, composite numbers having primitive roots, Euler's criterion, the Legendre symbol and its properties, quadratic reciprocity, quadratic congruences with composite moduli.	$\mathbf{M N}$	$\mathbf{2 0}$	50		

		Public key encryption, RSA encryption and decryption, the equation $x^{2}+\mathrm{y}^{2}=z^{2}$, Fermat's Last theorem.		
SH/MTH/ 604/DSE-4	Project Work		Al	

The Tentative dates for the Internal Assessment will be in June 2021.

